$0.28 \times 0.24 \times 0.20 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

5-Methoxy-2-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

K. Dhahagani,^a K. Manvizhi,^b G. Chakkaravarthi,^c* G. Anbalagan^d and G. Rajagopal^a

^aDepartment of Chemistry, Government Arts College, Melur 625 106, India, ^bDepartment of Chemistry, Anand Institute of Higher Technology, Kazhipattur, Chennai 603 103, India, ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^dDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India

Correspondence e-mail:

chakkaravarthi_2005@yahoo.com, rajagopal18@yahoo.com

Received 22 August 2011; accepted 23 August 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.066; wR factor = 0.204; data-to-parameter ratio = 23.5.

In the title compound, $C_{18}H_{20}N_2O_3$, the dihedral angle between the two aromatic rings is 33.66 (6)°. The morpholine ring adopts a chair conformation. The molecular structure is stabilized by an intramolecular $O-H\cdots N$ hydrogen bond. In the crystal, molecules are linked *via* weak intermolecular C- $H\cdots O$ and $C-H\cdots \pi$ interactions.

Related literature

For the biological activity of morpholine derivatives, see: Lan *et al.* (2010); Raparti *et al.* (2009). For standard bond lengths, see: Allen *et al.* (1987). For a related structure, see: Yang *et al.* (2011). For the definition of puckering parameters, see: Cremer & Pople (1975). For graph-set notation, see: Etter *et al.* (1990).

Experimental

Crystal data $C_{18}H_{20}N_2O_3$ $M_r = 312.36$ Monoclinic, $P2_1/n$ a = 10.623 (6) Å b = 9.106 (5) Å

c = 16.640 (5) Å $\beta = 97.446 (6)^{\circ}$ $V = 1596.2 (13) \text{ Å}^{3}$ Z = 4Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K

Data collection

Bruker Kappa APEXII	21
diffractometer	49
Absorption correction: multi-scan	27
(SADABS; Sheldrick, 1996)	R
$T_{\min} = 0.975, \ T_{\max} = 0.982$	St

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ $wR(F^2) = 0.204$ S = 1.054941 reflections 21296 measured reflections 4941 independent reflections 2761 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$ Standard reflections: 0

210 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.29 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C5-C10 and C12-C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$O2-H2\cdots N2$	0.82	1.87	2.600 (2)	148
C14−H14···O3 ⁱ	0.93	2.53	3.412 (3)	158
$C18 - H18B \cdots O1^{ii}$	0.96	2.44	3.289 (3)	148
$C2-H2A\cdots Cg3^{iii}$	0.97	2.92	3.799 (4)	152
$C16-H16\cdots Cg2^{iv}$	0.93	2.86	3.663 (3)	146

Symmetry codes: (i) -x + 3, -y + 1, -z + 1; (ii) $x + \frac{3}{2}$, $-y + \frac{1}{2}$, $z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) $-x + \frac{5}{2}$, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

The authors wish to acknowledge SAIF, IIT, Madras for data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5628).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.

Lan, P., Chen, W. N., Xiao, G. K., Sun, P. H. & Chen, W. M. (2010). Bioorg. Med. Chem. Lett. 20, 6764–6772.

Raparti, V., Chitre, T., Bothara, K., Kumar, V., Dangre, S., Khachane, C., Gore, S. & Deshmane, B. (2009). *Eur. J. Med. Chem.* **44**, 3954–3960.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Yang, L.-L., Zheng, R.-L., Li, G.-B., Sun, Q.-Z. & Xie, Y.-M. (2011). Acta Cryst. E67, 0754.

Acta Cryst. (2011). E67, o2501 [doi:10.1107/S1600536811034659]

5-Methoxy-2-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

K. Dhahagani, K. Manvizhi, G. Chakkaravarthi, G. Anbalagan and G. Rajagopal

Comment

Morpholine derivatives possess anticancer and antimicrobial (Lan *et al.*, 2010; Raparti *et al.*, 2009) activities. The goemetric parameters of the title compound (I) are comparable with the literature values and reported related structure (Allen *et al.*, 1987; Yang *et al.*, 2011).

The mean planes of the two benzene rings (C5-C10) and (C12-C17) are oriented at an angle of 33.66 (6)°. The morpholine ring adopts chair conformation [Puckering parameters are Q = 0.470 (3)Å, θ = 7.0 (2)° and Φ = 11 (3)° (Cremer & Pople, 1975) for the ring (O1/C1/C2/N1/C3/C4)].

The molecular structure is stabilized by weak intramolecular O—H···N hydrogen bonding. In the crystal structure, the molecules are linked via weak intermolecular C—H···O and C—H··· π (Fig. 2 and Table 1) interactions. Intramolecular O2-H2···N2 hydrogen bonding generates a six-membered ring, with S(6) graph-set motif and the intermolecular C13-H13···O3 interaction generates an eight-membered ring, with R₂²(8) graph-set motif.

Experimental

An ethanolic solution (20 ml) of 4-(4-aminophenyl)morpholine (10 mmol) was magnetically stirred in a round bottom flask followed by drop wise addition of ethanolic solution of 4-methoxysalicylaldehyde (10 mmol). The reaction mixture was then refluxed for two hours and upon cooling to 273 K, a pale yellow crystalline solid precipitates from the mixture. The solid which is separated out was filtered washed with ice cold ethanol and dried in vaccuo over anhydrous CaCl₂. Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of a solution of the title compound in methanol at room temperature. Melting Point: 457 K.

Refinement

All H atoms were positioned geometrically with C—H = 0.93-0.97 Å and O–H = 0.82 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.5 Ueq(O) and 1.2 Ueq(C).

Figures

Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down *a* axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

5-Methoxy-2-{[4-(morpholin-4-yl)phenyl]iminomethyl}phenol

Crystal data

C₁₈H₂₀N₂O₃ $M_r = 312.36$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 10.623 (6) Å b = 9.106 (5) Å c = 16.640 (5) Å $\beta = 97.446$ (6)° V = 1596.2 (13) Å³ Z = 4

Data collection

4941 independent reflections
2761 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.031$
$\theta_{\text{max}} = 30.7^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
$h = -9 \rightarrow 15$
$k = -12 \rightarrow 12$
$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.066$	Hydrogen site location: inferred from neighbouring sites

F(000) = 664 $D_x = 1.300 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4380 reflections $\theta = 2.5-30.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 KBlock, colourless $0.28 \times 0.24 \times 0.20 \text{ mm}$

H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.089P)^2 + 0.3452P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$
$\Delta \rho_{\text{max}} = 0.29 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{min} = -0.27 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å
--

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4258 (2)	0.3507 (4)	0.86902 (17)	0.0858 (8)
H1A	0.3592	0.4221	0.8539	0.103*
H1B	0.3974	0.2575	0.8448	0.103*
C2	0.5421 (2)	0.3978 (3)	0.83441 (17)	0.0756 (7)
H2A	0.5265	0.3921	0.7758	0.091*
H2B	0.5609	0.4993	0.8491	0.091*
C3	0.6624 (2)	0.2790 (4)	0.94823 (13)	0.0993 (11)
H3A	0.6977	0.3649	0.9774	0.119*
H3B	0.7214	0.1985	0.9605	0.119*
C4	0.5395 (2)	0.2410 (4)	0.97652 (15)	0.1022 (11)
H4A	0.5149	0.1435	0.9570	0.123*
H4B	0.5519	0.2374	1.0353	0.123*
C5	0.75890 (16)	0.31894 (19)	0.82520 (9)	0.0409 (4)
C6	0.76084 (19)	0.3993 (2)	0.75393 (12)	0.0559 (5)
H6	0.6885	0.4501	0.7320	0.067*
C7	0.86803 (19)	0.4047 (2)	0.71547 (11)	0.0549 (5)
H7	0.8667	0.4599	0.6683	0.066*
C8	0.97710 (16)	0.33047 (18)	0.74518 (9)	0.0396 (4)
C9	0.97771 (17)	0.2539 (2)	0.81688 (10)	0.0472 (4)
Н9	1.0510	0.2051	0.8390	0.057*
C10	0.87091 (18)	0.2490 (2)	0.85609 (10)	0.0482 (4)
H10	0.8741	0.1974	0.9045	0.058*
C11	1.16925 (16)	0.24530 (19)	0.70644 (10)	0.0421 (4)
H11	1.1595	0.1603	0.7360	0.051*
C12	1.28060 (16)	0.26119 (18)	0.66578 (9)	0.0393 (4)
C13	1.30539 (17)	0.39126 (18)	0.62486 (10)	0.0402 (4)
C14	1.41223 (17)	0.40335 (19)	0.58674 (10)	0.0450 (4)
H14	1.4284	0.4902	0.5605	0.054*
C15	1.49540 (17)	0.2874 (2)	0.58729 (10)	0.0461 (4)
C16	1.47404 (19)	0.1582 (2)	0.62718 (13)	0.0559 (5)
H16	1.5307	0.0802	0.6280	0.067*
C17	1.36751 (19)	0.1477 (2)	0.66548 (12)	0.0532 (5)
H17	1.3530	0.0609	0.6923	0.064*
C18	1.6838 (2)	0.1948 (3)	0.54114 (18)	0.0868 (8)
H18A	1.7226	0.1680	0.5944	0.130*
H18B	1.7482	0.2261	0.5094	0.130*
H18C	1.6397	0.1117	0.5157	0.130*

N1	0.64900 (14)	0.30818 (19)	0.86311 (8)	0.0491 (4)
N2	1.08397 (14)	0.34434 (16)	0.70305 (8)	0.0420 (3)
01	0.44192 (16)	0.3353 (2)	0.95242 (11)	0.0846 (6)
O2	1.22521 (14)	0.50605 (14)	0.62211 (9)	0.0607 (4)
H2	1.1635	0.4839	0.6445	0.091*
O3	1.59655 (14)	0.31149 (17)	0.54691 (9)	0.0650 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0467 (13)	0.118 (2)	0.0978 (19)	0.0095 (14)	0.0282 (13)	0.0384 (16)
C2	0.0460 (12)	0.0875 (17)	0.0984 (18)	0.0089 (12)	0.0296 (12)	0.0292 (14)
C3	0.0464 (13)	0.211 (4)	0.0423 (11)	-0.0168 (18)	0.0123 (9)	0.0158 (15)
C4	0.0513 (14)	0.204 (4)	0.0542 (13)	0.0027 (19)	0.0187 (11)	0.0345 (17)
C5	0.0358 (9)	0.0504 (10)	0.0378 (8)	-0.0008 (7)	0.0096 (7)	0.0001 (7)
C6	0.0391 (10)	0.0789 (14)	0.0515 (10)	0.0145 (9)	0.0124 (8)	0.0206 (9)
C7	0.0457 (11)	0.0742 (13)	0.0474 (9)	0.0086 (9)	0.0165 (8)	0.0204 (9)
C8	0.0379 (9)	0.0430 (9)	0.0400 (8)	-0.0018 (7)	0.0131 (7)	-0.0021 (6)
С9	0.0398 (9)	0.0576 (11)	0.0457 (9)	0.0105 (8)	0.0118 (7)	0.0082 (8)
C10	0.0458 (10)	0.0589 (11)	0.0422 (8)	0.0064 (9)	0.0142 (8)	0.0119 (8)
C11	0.0431 (10)	0.0409 (9)	0.0443 (8)	-0.0020 (8)	0.0131 (7)	0.0012 (7)
C12	0.0381 (9)	0.0408 (9)	0.0407 (8)	0.0013 (7)	0.0119 (7)	0.0012 (6)
C13	0.0420 (10)	0.0385 (8)	0.0415 (8)	0.0030 (7)	0.0112 (7)	-0.0010 (6)
C14	0.0479 (11)	0.0416 (9)	0.0483 (9)	-0.0017 (8)	0.0169 (8)	0.0034 (7)
C15	0.0383 (9)	0.0576 (11)	0.0454 (9)	0.0020 (8)	0.0161 (7)	0.0031 (8)
C16	0.0473 (11)	0.0549 (11)	0.0693 (12)	0.0179 (9)	0.0218 (9)	0.0137 (9)
C17	0.0519 (11)	0.0478 (10)	0.0640 (11)	0.0099 (9)	0.0228 (9)	0.0160 (8)
C18	0.0587 (15)	0.106 (2)	0.105 (2)	0.0246 (14)	0.0441 (14)	0.0078 (16)
N1	0.0366 (8)	0.0714 (11)	0.0413 (7)	0.0044 (7)	0.0120 (6)	0.0086 (7)
N2	0.0387 (8)	0.0472 (8)	0.0425 (7)	0.0013 (6)	0.0141 (6)	-0.0004 (6)
01	0.0549 (10)	0.1205 (15)	0.0859 (12)	-0.0139 (10)	0.0373 (9)	-0.0139 (10)
02	0.0624 (9)	0.0448 (7)	0.0820 (10)	0.0152 (7)	0.0362 (8)	0.0122 (6)
03	0.0515 (8)	0.0765 (10)	0.0743 (9)	0.0092 (7)	0.0351 (7)	0.0138 (7)

Geometric parameters (Å, °)

C1—O1	1.383 (3)	C9—C10	1.381 (2)
C1—C2	1.492 (3)	С9—Н9	0.9300
C1—H1A	0.9700	C10—H10	0.9300
C1—H1B	0.9700	C11—N2	1.274 (2)
C2—N1	1.430 (3)	C11—C12	1.444 (2)
C2—H2A	0.9700	C11—H11	0.9300
С2—Н2В	0.9700	C12—C17	1.386 (2)
C3—N1	1.430 (3)	C12—C13	1.408 (2)
C3—C4	1.485 (3)	C13—O2	1.345 (2)
С3—НЗА	0.9700	C13—C14	1.374 (2)
С3—Н3В	0.9700	C14—C15	1.376 (3)
C4—O1	1.365 (3)	C14—H14	0.9300
C4—H4A	0.9700	C15—O3	1.357 (2)

C4—H4B	0.9700	C15—C16	1.384 (3)
C5—C10	1.388 (2)	C16—C17	1.372 (3)
C5—C6	1.396 (2)	C16—H16	0.9300
C5—N1	1.400 (2)	С17—Н17	0.9300
C6—C7	1.378 (3)	C18—O3	1.421 (3)
С6—Н6	0.9300	C18—H18A	0.9600
С7—С8	1.377 (3)	C18—H18B	0.9600
С7—Н7	0.9300	C18—H18C	0.9600
C8—C9	1.381 (2)	O2—H2	0.8200
C8—N2	1.415 (2)		
01—C1—C2	114.5 (2)	С8—С9—Н9	119.6
O1—C1—H1A	108.6	C9—C10—C5	121.83 (16)
C2—C1—H1A	108.6	C9—C10—H10	119.1
O1—C1—H1B	108.6	C5-C10-H10	119.1
C2—C1—H1B	108.6	N2—C11—C12	121.94 (16)
H1A—C1—H1B	107.6	N2—C11—H11	119.0
N1—C2—C1	111.6 (2)	C12—C11—H11	119.0
N1—C2—H2A	109.3	C17—C12—C13	117.33 (16)
C1—C2—H2A	109.3	C17—C12—C11	120.88 (16)
N1—C2—H2B	109.3	C13—C12—C11	121.79 (15)
C1—C2—H2B	109.3	O2—C13—C14	118.62 (15)
H2A—C2—H2B	108.0	O2—C13—C12	120.85 (16)
N1—C3—C4	112.25 (18)	C14—C13—C12	120.53 (15)
N1—C3—H3A	109.2	C13—C14—C15	120.22 (16)
С4—С3—НЗА	109.2	C13—C14—H14	119.9
N1—C3—H3B	109.2	C15—C14—H14	119.9
C4—C3—H3B	109.2	O3—C15—C14	114.92 (16)
НЗА—СЗ—НЗВ	107.9	O3—C15—C16	124.38 (17)
O1—C4—C3	115.2 (3)	C14—C15—C16	120.70 (17)
O1—C4—H4A	108.5	C17—C16—C15	118.59 (17)
C3—C4—H4A	108.5	С17—С16—Н16	120.7
O1—C4—H4B	108.5	С15—С16—Н16	120.7
C3—C4—H4B	108.5	C16—C17—C12	122.63 (17)
H4A—C4—H4B	107.5	C16—C17—H17	118.7
C10-C5-C6	116.66 (16)	C12—C17—H17	118.7
C10—C5—N1	121.72 (15)	O3—C18—H18A	109.5
C6—C5—N1	121.62 (16)	O3—C18—H18B	109.5
C7—C6—C5	121.18 (17)	H18A—C18—H18B	109.5
С7—С6—Н6	119.4	O3—C18—H18C	109.5
С5—С6—Н6	119.4	H18A—C18—H18C	109.5
C8—C7—C6	121.55 (17)	H18B—C18—H18C	109.5
С8—С7—Н7	119.2	C5—N1—C2	118.82 (16)
С6—С7—Н7	119.2	C5—N1—C3	118.53 (16)
C7—C8—C9	117.88 (16)	C2—N1—C3	114.18 (19)
C7—C8—N2	118.04 (15)	C11—N2—C8	121.75 (15)
C9—C8—N2	123.97 (16)	C4—O1—C1	110.42 (19)
С10—С9—С8	120.83 (16)	С13—О2—Н2	109.5
С10—С9—Н9	119.6	C15—O3—C18	118.55 (17)

O1-C1-C2-N1	50.7 (3)	C13-C14-C15-C16	-1.1 (3)
N1—C3—C4—O1	-49.6 (4)	O3-C15-C16-C17	-179.70 (19)
C10-C5-C6-C7	1.8 (3)	C14—C15—C16—C17	0.6 (3)
N1-C5-C6-C7	-177.56 (19)	C15-C16-C17-C12	0.0 (3)
C5—C6—C7—C8	0.5 (3)	C13-C12-C17-C16	-0.2 (3)
C6—C7—C8—C9	-2.3 (3)	C11—C12—C17—C16	179.64 (19)
C6—C7—C8—N2	-178.64 (18)	C10-C5-N1-C2	171.9 (2)
C7—C8—C9—C10	1.8 (3)	C6—C5—N1—C2	-8.8 (3)
N2-C8-C9-C10	177.85 (17)	C10—C5—N1—C3	25.7 (3)
C8—C9—C10—C5	0.6 (3)	C6—C5—N1—C3	-155.0 (2)
C6—C5—C10—C9	-2.3 (3)	C1—C2—N1—C5	167.9 (2)
N1-C5-C10-C9	177.01 (17)	C1—C2—N1—C3	-44.4 (3)
N2-C11-C12-C17	-175.33 (17)	C4—C3—N1—C5	-168.5 (3)
N2-C11-C12-C13	4.5 (3)	C4—C3—N1—C2	43.8 (4)
C17—C12—C13—O2	179.68 (17)	C12-C11-N2-C8	-177.88 (15)
C11—C12—C13—O2	-0.2 (3)	C7—C8—N2—C11	-154.33 (18)
C17—C12—C13—C14	-0.2 (3)	C9—C8—N2—C11	29.6 (3)
C11—C12—C13—C14	179.93 (16)	C3—C4—O1—C1	54.7 (4)
O2-C13-C14-C15	-179.05 (17)	C2-C1-O1-C4	-55.3 (3)
C12—C13—C14—C15	0.9 (3)	C14—C15—O3—C18	-177.0 (2)
C13—C14—C15—O3	179.24 (16)	C16—C15—O3—C18	3.3 (3)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C5–C10 and C12–C17 rings, respectively.

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
O2—H2…N2	0.82	1.87	2.600 (2)	148
C14—H14···O3 ⁱ	0.93	2.53	3.412 (3)	158
C18—H18B…O1 ⁱⁱ	0.96	2.44	3.289 (3)	148
C2—H2A···Cg3 ⁱⁱⁱ	0.97	2.92	3.799 (4)	152
C16—H16···Cg2 ^{iv}	0.93	2.86	3.663 (3)	146
(1, 1)	1/2 1/2 (***)	1 () ()	1/2 12/2	

Symmetry codes: (i) -x+3, -y+1, -z+1; (ii) x+3/2, -y+1/2, z-1/2; (iii) x-1, y, z; (iv) -x+5/2, y-1/2, -z+3/2.

Fig. 2

